FOREWORD

The UDI World Electric Power Plants Data Base (WEPP) is a comprehensive, global inventory of electric power generating units. It contains ownership, location, and engineering design data for power plants of all sizes and technologies operated by regulated utilities, private power companies, and industrial or commercial autoproducers in every country and major territory in the world.

The WEPP is maintained and re-issued quarterly in its entirety (including regional subsets) by the UDI Products Group of Platts, the energy information division of McGraw Hill Financial.

The current version of any of the WEPP data base documentation is the most authoritative and supersedes all previous versions.

ACKNOWLEDGMENTS AND CONTACT

The assistance of the thousands of organizations and individuals that have provided surveys, reports, and other information for WEPP updates is gratefully acknowledged.

Any data base corrections or updates are welcome and should be directed to Christopher Bergesen, Editorial Director, UDI Products, in Platts’ Washington, DC offices (contact details follow below).

LEGAL STATEMENT

The accompanying document entitled COPYRIGHT AND DISCLAIMER - UDI WORLD ELECTRIC POWER PLANTS DATA BASE is hereby incorporated into this documentation by reference.

Copyright © 2015 Platts, a division of McGraw Hill Financial. All rights reserved.

Platts, UDI Products Group
1200 G St NW Ste 1000
Washington, DC 20005 USA

Tel: 202-942-8788
Fax: 202-942-8789
E-mail: udi@platts.com

www.platts.com/udi-data-directories
WEPP METHODOLOGY - TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATA BASE HISTORY AND FORMAT</td>
<td>2</td>
</tr>
<tr>
<td>DATA BASE ORGANIZATION</td>
<td>2</td>
</tr>
<tr>
<td>DATA BASE COVERAGE</td>
<td>3</td>
</tr>
<tr>
<td>RESEARCH OVERVIEW AND INFORMATION SOURCES</td>
<td>4</td>
</tr>
<tr>
<td>UNIT CONFIGURATION AND CODING CONVENTIONS</td>
<td>6</td>
</tr>
<tr>
<td>POWER COMPANY AND POWER PLANT NAMES</td>
<td>7</td>
</tr>
<tr>
<td>POWER PLANT OWNERS AND OPERATORS</td>
<td>10</td>
</tr>
<tr>
<td>ID NUMBERS</td>
<td>12</td>
</tr>
<tr>
<td>COMPANY TYPE</td>
<td>13</td>
</tr>
<tr>
<td>CAPACITY RATINGS</td>
<td>14</td>
</tr>
<tr>
<td>PLANT STATUS</td>
<td>14</td>
</tr>
<tr>
<td>SERVICE DATES</td>
<td>16</td>
</tr>
<tr>
<td>NEW PROJECTS</td>
<td>16</td>
</tr>
<tr>
<td>UNSCHEDULED CAPACITY</td>
<td>17</td>
</tr>
<tr>
<td>GEOGRAPHIC INFORMATION</td>
<td>18</td>
</tr>
<tr>
<td>ABBREVIATIONS FOR VENDORS AND DESIGN DATA</td>
<td>21</td>
</tr>
<tr>
<td>BTG TYPES AND MODEL NUMBERS</td>
<td>22</td>
</tr>
<tr>
<td>SMALL PLANTS AND DISTRIBUTED GENERATION</td>
<td>23</td>
</tr>
<tr>
<td>CHP AND COGENERATION</td>
<td>24</td>
</tr>
<tr>
<td>SPECIAL FUELS AND GENERATING TECHNOLOGIES</td>
<td>25</td>
</tr>
<tr>
<td>REPOWERING</td>
<td>30</td>
</tr>
<tr>
<td>EQUIPMENT RETROFITS</td>
<td>31</td>
</tr>
</tbody>
</table>
DATA BASE HISTORY AND FORMAT

The first WEPP precursor was a computerized, power plant data base covering U.S. electric utilities developed in 1978 at the Atomic Industrial Forum, a trade association based in Bethesda, Maryland. Joint funding was received from the U.S. Department of Energy and the Utility Water Act Group (UWAG), a power company advocacy organization. Overseas power plant data collection began in 1984 and the first international plant directory was published in 1990. The first stand-alone data set with essentially the current structure was published in March 1998.

The WEPP is sold as a flat data file in dbf (dBase III) format. The file opens directly with Microsoft Excel software and can also readily be imported into Microsoft Access or other data-management software. Due to the size of the complete generating unit file, it will not completely load in single spreadsheets of older Excel versions. Separate regional subsets with identical field structures have been created and these can be used directly in all Excel versions.

The WEPP data file directory is maintained as a separate document (UNITDOC.XLS). This includes field names, types, lengths, and a brief description of field content. It should be used in conjunction with the WEPP List of Abbreviations (ABBREV.XLS).

DATA BASE ORGANIZATION

Information in the WEPP data base is included at the company, plant, and unit levels. Company data include the company name, electric type, and business type (also see “Power Producer Business Types and Classifications” below.) There are three electric types (also see “Company Type” section below):

U = regulated utility, also includes much of the electric generating capacity owned by national or local government ministries, agencies, departments, and other government-controlled entities

A = autoproducer, an industrial or commercial enterprise generating its own electricity typically without off-site energy sales, although the facility may be grid-connected (autoproducer generators are also known as inside-the-fence or captive power plants, CPP)

P = private, independent power plant (IPP), or merchant plant developer, also includes utility-built capacity later sold to third parties

Plant (site) location data include the city, state or province, country, geographic area, subregion, and postal code. Most territories and other dependencies are treated in the data base as separate countries. For plants in North America, the North American Electric Reliability Corp (NERC) region is listed as the sub-region.
Unit data include unit name, operating status, capacity (MWe), year-on-line, primary and alternate fuels, equipment vendors for the boiler (or reactor), turbine and/or engine, and generator/alternator, steam conditions, pollution control equipment, engineering and construction contractors, and cooling system data. See “Model Numbers” below for further discussion of coding used for prime mover and steam generator types.

DATA BASE COVERAGE

As a general matter, electric power plants are constructed on defined areas developed for industrial use. These locations are often called sites, but the terms plant and site are used synonymously. One or more individual generating units can be built at each site. By general definition, a unit is a prime mover, which can be a turbine or engine. This may be driven by steam from a boiler or reactor, or directly by a fuel combustion process such as in a gas turbine or reciprocating engine, or moved by water or air as in hydroelectric plants and wind energy plants, respectively. The prime mover is connected to a generator which produces electricity and, this energy is then moved off the site via some type of switchyard and transmission tie-line connection.

The WEPP data base covers electric power plants in every country in the world and includes operating, projected, deactivated, retired, and cancelled facilities. Global coverage is comprehensive for medium- and large-sized power plants of all types. Coverage for wind turbines, diesel and gas engines, photovoltaic (PV) solar systems, fuel cells, and mini- and micro-hydroelectric units is considered representative, but is not exhaustive. Nonetheless, about a quarter of the data base consists of units of less than 1 MW capacity. Generating units of less than 1 kW are not included in the data base and coverage of generating units less than 25 kW is limited. There are, in fact, no reliable global statistics on the number of these small power generators of any variety.

Mechanical-drive steam turbines, gas turbines, and reciprocating engines are not included in the WEPP, nor are central heating plants without electricity output, power generating equipment on offshore oil and gas production platforms, and most smaller, short-term rental units. Since some “temporary” large rental plants have stayed in service for years, these rental facilities are often included where data are available.

Power generation at land-based oil and natural gas fields is covered if reliable data are available. These are mostly gas turbine and diesel or gas engine installations at remote locations that provide local power to support hydrocarbon production operations. Similarly, permanent thermal power plants at mineral mining sites are included in the data base where data are available. Temporary power installations that are built to support drilling and mining operations are not included.

Reciprocating (IC) engines or gas turbines identified in primary sources as "emergency," "standby," "backup," or “black-start” are included where data are available. Status for these machines is generally shown as OPR (operational) even though they typically operate for load very infrequently. Emergency diesel sets at nuclear power plants are
typically not included in the data base.

See Appendix A for more details on data base coverage by plant technology and size. This appendix is generally applicable for installed and near-term power plants and is necessarily subjective. This is because: 1) the “100%” basis is lacking in almost all instances and 2) power planning for forward projects becomes rapidly less certain in out-years. Also, see below under “Small Plants and Distributed Generation” and “Photovoltaic and Wind Energy Plants.”

RESEARCH OVERVIEW AND INFORMATION SOURCES

For the last two decades, the WEPP data base research process has remained essentially the same. UDI staff scan the trade and business press daily and are alerted to possibly relevant material by web-based tools. In addition, great quantities of historical information are available on the web and/or in lists and other documentation already in UDI’s collection and these are consulted on a continuing basis. From these primary and secondary data base sources, power plant data are extracted, cross-checked, entered, and verified to the extent possible.

A direct inquiry to plant operators or suppliers is often sent following initial data entry and/or when new plants are brought online or expected in service. Originally, written or telephone inquiries were the rule, and these resulted in typed letters and data tables. The introduction of the fax machine and more reliable overseas telecommunications were a great advance. Finally, the development of the worldwide web and computer-based communications and imaging technologies enabled a significant increase in the amount and timeliness of material available for review.

As the amount of information available for review has increased over the last three decades, so too did the absolute size of the electric power industry, the number of power plants, and the types of generating technologies. This made it imperative to continue to focus on the most relevant information for data base users. Fortunately, the original data base design proved sufficiently inclusive and robust so that only modest changes have been required since the current format was first established in the early 1990s.

Updates (or possible updates) to plant-level or unit-level data in the WEPP are essentially of two varieties, those requiring the addition of new records to the data base and those requiring updates to existing records.

For new records, the first step is to ensure that the facility and/or the plant operator are not already in the data base under different names. This process can take some time, particularly if the source information is in a foreign language, fragmentary, or otherwise obscure. Once it is established that the plant is new to the data base, the record is created. Oftentimes, the result is both a new WEPP company record, a new plant record, and a new unit record. For larger power stations, the initial data entry process is
usually accompanied by a web search for additional information. Typically, at this stage, web-based queries are completed to establish more precise geographical location or ownership, the number of generating units, deployment schedule, and equipment suppliers. For small plants (usually in the <5-MW size range), multiple records are often added as a website list of references for a particular operator or equipment supplier is frequently uncovered during the query process.

While many new records are added to the WEPP (usually around 2,000 per quarter), it is more common to update existing records. In part, the process is the same as with the addition of new records, that is the plant must be identified and baseline information checked. The update may be significant (ownership, service year, status, or suppliers) or relatively minor (modest change in capacity rating, addition of coal rank or oil grade, turbine model number, cooling system, etc.). As with the new record addition process, it is often the case that one or more other unit records can be updated at the same time. This happens when, for example, a list of references for engineering services or pollution control equipment is uncovered.

As noted, power plant data are obtained from numerous sources. These include direct surveys, vendor reference lists, power company financial and statistical reports, and the trade and business press. Primary sources such as surveys and materials directly produced by owners, operators, and suppliers are used preferentially:

- Reliable information on new and existing power plants is often obtained by direct survey. To this end, plant-specific queries are sent on a continuing basis to utilities, autoproducers, private-power companies, and suppliers around the world.

- Annual reports, statistical supplements, web pages, press releases, and other public relations materials provided by power plant operators or equipment and service suppliers are a second primary data source.

- Experience lists (also termed reference or installation lists) are a third primary data source. Over 400 equipment and service supplier lists are available for use in the WEPP data base research process and new and updated lists are frequently obtained from the web or by direct request. These lists may cover half a dozen plants/units or many hundred of projects. Data extracted from the lists are cross-checked against existing records in the data base to minimize duplication.

- Trade and business press sources including newsletters, newspapers and magazines, papers from professional meetings, and yearbooks and directories are also consulted on a continuing basis. Oftentimes, such references provide only one piece of information for a power plant or generating unit, but these references are usually reliable and timely.

- An increasing number of individuals are using the web to post their personal engineering and construction experiences and other references in the electric power
Over the last 10 years, documentation associated with Clean Development Mechanism (CDM) registration and validation has become increasingly useful for small-power and renewable energy power projects. The Kyoto Protocol came into force in February 2005 and by the end of that year, over 300 CDM projects had been submitted for validation. Thousands of submissions have now been made, many for power projects. These are mainly small hydro projects, wind parks, biomass power, biogas and other alternative fuels, and power generation at industrial sites. The CDM Project Design Documents (PDD) have details about plant ownership, geographic location, schedules and generating technologies, while the Validation and Monitoring Reports often add information on project completion and equipment vendors.

UNIT CONFIGURATION AND CODING CONVENTIONS

With some exceptions as noted below, the WEPP data base includes information on a generating unit basis whenever possible. A “unit” may be termed a set, block, aggregate, or section in other sources. Unit names in the WEPP are unique.

- For typical steam-electric plants, a unit is comprised of a steam generator (boiler or reactor), a steam turbine (the prime mover), and a generator. In cases were a series of boilers are connected to a common steam header, the unit designations are applied to the prime movers and the boiler-related data are assigned to the unit records as appropriate. In some instances, a single boiler or reactor drives two identical turbine-generator (T/G) sets. In an analogous situation, two identical steam-electric boilers may drive a single T/G set. In each of these instances, there is a single unit record posted in the data base.

- For simple-cycle frame and aeroderivative gas turbines, a unit consists of the gas turbine (GT) and generator. Note that gas turbine (gaseous fuels) and combustion turbine (liquid fuels) are considered synonymous in the data base. Pairs of gas turbines driving single generators are not identified by a separate UTYPE designation and this machine configuration is considered a single unit.

- Combined-cycle gas turbine units (CCGT), cogeneration units, and combined heat-and-power (CHP) units typically add a fired or unfired waste heat recovery steam generator (HRSG) behind a gas turbine. The HRSG may in turn drive a steam turbine or may only generate process steam or hot water for heating or industrial applications. HRSG supplier may be listed even if it is for heat production only (also see below under “Capacity Rating,” “CHP and Cogeneration,” and “Repowering”).

- Combined-cycle units are typically built in configurations abbreviated as 1+1, 2+1, 3+1, 3+2, or 4+1. The 2+1 configuration, for example, includes two GTs, each followed by a single HRSG, with the two HRSGs supplying one steam T/G set. Gas
turbines and steam turbines in combined-cycle are shown with UTYPE of GT/C and ST/C, respectively, and data for each prime mover are listed separately where data are available. CCGT units in CHP may have their own coding. Single-shaft combined-cycle units have a gas turbine and a steam set driving the same generator and are given their own abbreviation in the data base (CCSS). For single-shaft units, the capacity (MWe) of the gas and steam turbines are aggregated and not otherwise listed separately. Also, it is generally the case that only the gas turbine model is listed in CCSS records.

✔ In hydroelectric plants, a unit is considered to be a hydraulic turbine and attached generator. If two turbines drive a single generator, this array is considered a single unit.

✔ For internal combustion (IC) units (reciprocating gas and diesel engines), a unit is an engine and a generator/alternator. In many cases, waste heat is taken off IC engines for district heating or other purposes (cogeneration), and, in some cases, this is used to generate steam and drive steam-turbines in combined-cycle. Both instances are coded separately. In some cases where large numbers of identical indoor or containerized engines have been installed, these may be listed as a single “unit” with the number of engines indicated.

✔ For microturbine plants, the "unit" record consists of same-model gas turbines installed at the same time. If known, the number of machines is indicated in the unit name (for example, MICROTURBINE PLANT GT 1-12).

✔ For wind energy plants, the "unit" record consists of wind turbine generators (WTG) of the same model installed at the same time. If known, the number of machines is indicated in the unit name (for example, WIND PLANT WTG 1-8). There are frequently series of WTGs of different size, design, and ownership installed at the same site and these are usually listed separately. Also see below under “Wind Energy and Photovoltaic Plants.”

✔ Photovoltaic (PV) plants and fuel cells (FC) are not unitized, although installations of different vintage or with different suppliers may be listed separately. The generating capacity of PV power plants is peak electric output (kWp). Also see below under “Wind Energy and Photovoltaic Plants.”

POWER COMPANY AND POWER PLANT NAMES

Where possible, the full name of utilities, autoproducers, IPPs, or other plant operators are used. Otherwise, names are abbreviated to fit data base coding conventions.

The decision to list multinational companies as one company or as separate companies is made on a case-by-case basis. With the proliferation of overseas investments by large utility or energy groups, the trend has been towards uniquely identifying
subsidiaries or affiliates operating in various countries or regions.

A significant issue for company names in the WEPP data base is the use of acronyms for the business entity. There are many different forms used worldwide. In English-speaking countries, common acronyms are Inc (incorporated), Ltd (limited), PLC (public limited company), LLC (limited liability company), and Pvt or P (private). In German-speaking and north European countries, common acronyms are AB (Aktiebolag), AS or A/S (Aksjeselskap), AG (Aktiengesellschaft), or GmbH (GmbH (Gesellschaft mit beschränkter Haftung)). In many countries, SA (Sociedad Anonima) is commonly used for corporations. In Italy and other countries, SpA (Societa per azionian) and Srl (Societa a responsabilita limitata) are used. In Russia and the CIS countries, OOO is used for LLC companies and OAO is used for corporations. In the Balkans and Central Europe, doo (limited) and dd (PLC) are used. JSC signifies joint stock company in many countries.

This list is by no means exhaustive, but gives some of the more common forms. Note a further complication which is that the company type may precede or follow the rest of the company name as in “AB Company” or “Company AB”. This makes it necessary to use string-searching techniques on many occasions.

Wind turbines, mini- and micro-hydroelectric plants, diesel engines, and solar power plants are often installed by individuals or small private companies of various kinds. If the specific identity of the owner cannot be established, the operating company may be shown as “XXX Hydro Project,” “XYZ Plant,” and so on. Also, see below under “Photovoltaic and Wind Energy Plants.”

Many power plants have both formal and informal names, the former may be a person's name, for example, while the latter may be the name of the plant locality. The WEPP usually uses the formal plant name, but may indicate another name in common usage. Where specific unit names are not available, geographic location is most often used to name the plant for inclusion in the data base. To the extent possible, the plant name in the local language is used.

Plant and unit names in the WEPP are unique and addition of a location, operator acronym, or other identifier as part of the plant name is required when there are multiple occurrences of the same plant name. Also unique are the plant and unit data base ID numbers (see below in “ID Numbers” for more information).

Plant names in the data base may change in a variety of circumstances: when the operator changes the name, to clarify distinctions between plants with similar names, to preserve the plant’s unique identification in the data base, or to more closely align nomenclature with that used in primary source documentation.

Power plants and/or units may be deleted from the data base entirely. This occurs regularly, but in relatively small numbers. There are several related scenarios.
Plants (and associated units, if applicable) are deleted when they are found to be duplicative of existing records. Usually, the older record is maintained.

Individual units may be deleted in several instances:

1) A projected plant is down-sized and units may be therefore deleted from the record.

2) A projected plant configuration may be entirely reorganized during planning and design, so some units may be removed from the plant record, pending receipt of new configuration information.

3) Units were added in error to a plant record and are later deleted.

4) Units are deleted by accident during data entry. Even if they are immediately re-added, they receive a new UNITID (a counter field in Access).

5) Units (or plants) are found to be otherwise unidentifiable subsequent to data entry.

For the designation of individual units at a given power station, power companies may use a unit numbering scheme (1, 2, etc.), an alphabetic scheme (Block A, B, etc.), Roman numerals (I, II, III, and so on), or various combinations of the same. Letters are often used to indicate the development of new unit series at existing sites -- Plant "A No 1" and "A No 2" followed by Plant "B No 1" or such schemes as Plant "One", Plant "Two", Plant "New", Plant-1, Plant-2, etc. Some countries use both a letter designation (indicating a fundamental change in design or vintage) and a sequential unit numbering scheme.

Unit numbers in the WEPP are preferentially those assigned by the plant operator to the prime movers. Otherwise, the numbers are assigned to the prime movers on a sequential basis. The decision to combine unit records at a particular site may be somewhat arbitrary. In general, physical proximity of plant infrastructure or shared common facilities such as cooling water structures or switchyards suffices to group units of different types and/or vintages at the same site into a single plant. Note that in some cases, units are split into separate sites due to different ownership. Unit-level assignments to plant records can and do change over time.

If precise, unit-level data are not available, but a particular number of units are known to be in service, this is shown as, for example, PLANT NAME 1&2. Plant data are unitized whenever possible with the exceptions already noted.

Absence of a unit designation indicates that it is not known whether the generating capacity shown represents one unit or more than one individual unit. In some cases, research has established the presence of existing capacity of unspecified configuration to which new equipment has been added. In these instances, the original plant record may be shown as PLANT NAME (A) or PLANT NAME (B) (depending on the vintage of
the unspecified block) with the plant extension shown in unitized form as PLANT NAME-1, PLANT NAME-2, etc.

Industrial power plants are often shown with FACTORY, PLANT, MILL, REFINERY, SMELTER, WORKS, etc., as part of the plant name.

By convention, gas turbine unit names in the data base usually include the designation "GT", steam turbines in combined-cycle show "SC" prefixes, diesels show "IC", fuel cells have "FC", photovoltaic systems show "PV", waste-to-energy plants show “WTE,” and wind turbines "WTG". Some hydroelectric plants include “HY” as part of the unit name and “CC” may be used for combined-cycle plants.

For hydroelectric plants, auxiliary turbines for house use and ecological flow units are often installed at larger conventional hydropower stations. These are generally coded as A(uxiliary), as in PLANT NAME A1.

With very rare exceptions, periods are not used in WEPP company or plant names. International lettering is never used.

POWER PLANT OWNERS AND OPERATORS

The WEPP data base has a single field – COMPANY – for power plant owners and/or operators. Starting with the March 2011 release of the WEPP, the PARENT field was added to the file (see below).

As a general matter, the listed COMPANY is both the facility operator and sole or majority owner. However, there are many variations, including dedicated utility operating companies with one or more plants, third-party operation and maintenance (O&M) and service companies, government agencies with small power generators, special-purpose power development companies, and industrial companies for which power stations are a minor business at large pulp and paper plants, refineries, smelters, and so on.

A considerable number of power stations are jointly-owned, particularly large nuclear, coal, and hydroelectric plants. For many years, these joint arrangements were between regulated power companies and covered by long-term contractual arrangements of various kinds. Nowadays, the owners may include a mix of power companies and other parties, such as fuel or manufacturing companies, investment funds and financial institutions, and national or local government authorities of various kinds. The WEPP data base does not track joint ownership shares.

Power plant stakes and shares are often sold or transferred to other companies, with or without cash payments. In some instances, particularly in China, plants are owned by different subsidiaries or affiliates of the same holding companies. These shares may be also bought and sold within the umbrella company structure.
For all these reasons, the assignment of a particular power plant to a particular company can and does change over time. In addition, and as noted above, company and plant names can change as well, further complicating use of this data base field. This makes it impossible to use the WEPP data base to make precise lists of the “largest” power generating companies by fuel, technology, or geographic region.

Data base coding for owner type has also evolved and become more complex. Up until about 30 years ago, there were basically five kinds of companies operating electric power plants: 1) investor-owned utilities (IOU), either partially or entirely owned by stockholders or other listed companies; 2) national power systems, typically state-owned, vertically-integrated operations; 3) municipal and provincial utilities, generally operating as part of a regional or local government entity; 4) cooperative electric utilities; and 5) industrial power producers, also termed autoproducers, which operated captive power plants and, in some cases, small, off-grid distribution systems.

For a variety of reasons, many developed countries began generalized, global restructuring activities in the electric power sector from about 1980 forward. There were a variety of important consequences of these activities, but there was one very important result specific to the power generation business. This was the creation of a new class of power company, the so-called independent power producer (IPP), also termed private power producer, or merchant power company. These are companies that either built new power plants or acquired power plants previously under the control of IOUs or state-owned entities and then operated the plants in a nominally competitive fashion. This involved electricity sales into a wholesale electricity market and/or long term contractual arrangements with one of more distribution or intermediary companies, often under a power purchase agreement (PPA).

There are different varieties of IPP including companies specifically formed to build and run power plants (examples are AES Corp and Calpine Corp), conventional utilities operating unregulated or less regulated entities outside their “home” market (examples are E.ON and Iberdrola), spinoffs from large conventional utilities or related companies operating outside their home market, either private or state-owned (examples are GDF SUEZ and NRG Energy), companies specifically formed to undertake a particular type of power plant development, usually of a renewable nature, and, lastly, industrial, service, or commercial companies that enter the power generation business in their home market and may or may not venture elsewhere.

Some of the new, global power companies have many separate, individual companies operating in different countries with different names and sometimes with different equity stakes in particular generating assets. In addition, it is not uncommon for the same multinational power holding companies to have more than one operating subsidiary or affiliate in a particular country.

Today, there are simply too many institutional varieties of utilities, electric power companies, or generating companies (gencos) to usefully enumerate, but it is a least
true that large power stations tend to be owned and operated by large companies. This often makes the assignment of ELECTYPE and COMPTYPE an imprecise process. For example, many state-owned power companies have been partially privatized, but the original government owner may retain a golden share or otherwise continue to “control” the power company, even if only a nominally minority owner. Also, as already discussed, a regulated company may operate as an unregulated or merchant plant owner elsewhere.

Finally, while the global trend has generally been towards more private-sector ownership in the electric power sector, there have been some notable recent instances where national governments have reasserted control. The most complete example is probably Venezuela, but there are also situations in China, Russia, and elsewhere where financial and institutional control pathways are hard to establish. This is often because the owners of large power companies may themselves be state-owned and/or controlled banks, investment funds, industrial concerns, and so on.

The PARENT field was included in the WEPP data base to assist users in aggregating plant-level and unit-level data to a higher “institutional” level. The data are more comprehensive for North America where corporate structures in the power sector have been tracked for decades. In general, the PARENT field is used to track multinational power companies and holding companies and is of necessity a shortened and standardized version of the full legal corporate nomenclature. The PARENT field may also contain listings for two or more companies in joint venture or other arrangement.

Note that the PARENT data are not exhaustive or definitive and are being backfilled for plants outside North America. As with COMPANY, the companies listed in PARENT can and do change over time.

ID NUMBERS

The WEPP ID numbers on a company, location, and unit basis are solely data base counting fields. They are automatically assigned by the MS Access program as each record is added to the two source data bases maintained and updated by UDI, one for North America (NA) and one for all other countries (INTL). The counter fields are fixed once assigned by the data base software. The counter fields are converted to integer values prior to the compilation of the WEPP flat data files from the NA and INTL source files.

In order to preserve the unique numbering for all UNITIDs, LOCATIONIDs and COMPIDs, each INTL ID number in the source file is increased by 1,000,000, i.e., INTL record ID 1775 for a company, plant or unit record becomes ID 1001775 in the flat WEPP data file.

Since ID numbers are added sequentially during the data base updating process, any UNITID exceeding the highest domestic or international number from the previous
release is additive. The net number of units added in each release can be calculated from the totals reported for each geographic region and the total contained in the introductory information included with each release.

These ID numbers uniquely identify each entity and do not link to any non-UDI data table, nor do they contain any other information. As noted, the ID numbers are fixed once assigned. In instances where companies, plants or units are deleted from the data base entirely (see below for more information on this topic), their record IDs are also deleted and are not reused.

COMPANY TYPE

There are no hard and fast, or exact, definitions for the use of the COMPANY TYPE codes U, P and A in the WEPP data base.

These are some guidelines generally applicable to UDI directories and data bases:

Regulated, investor-owned utilities, either partially or entirely owned by stockholders or other listed companies, are classified U.

Regulated, municipal and provincial utilities, generally operating as part of a regional or local government entity, are classified U.

National power systems are typically state-owned and often vertically-integrated, they are classified U.

Regulated, cooperative electric utility cooperatives are classified U, other coops (vis., water or agricultural) are classified A or P depending on the case-by-case evaluation of the usage of the electricity generated.

District heating utilities and water utilities may be classified as U, A, or P depending on the usage of the electricity generated.

Government ministries with major responsibilities for sector operations (ie., the ministry itself owns power plants and/or T&D networks) are generally classified U.

Private companies -- including utilities from other countries -- that have built new power plants or taken over existing utility-owned power plants are generally classified P.

Private companies -- including utilities from other countries -- that have taken over transmission, and/or distribution facilities and/or retail functions previously under the control of state-owned entities, with or without associated power plants, are usually classified U.

Industrial power producers, also termed autoproducers, which operate captive power
plants and, in some cases, small distribution systems are usually classified A. If the facilities are grid-connected and known to be selling power offsite, they are classified P.

The terms private power plant, IPP, and merchant plant are considered synonymous for WEPP coding and research purposes.

CAPACITY RATINGS

The WEPP capacity value is preferentially gross megawatts electric (MWe). In many cases, no specifically defined value is available so the data base includes whatever value is included in the original documentation. Capacity ratings are poorly standardized across the industry, frequently differ from source to source, and can and do change with some frequency.

It is often the case that the nominal or design ratings of gas and steam turbines are listed in early documentation such as company press releases or licensing documentation. Once the machinery is in operation, new capacity data are frequently publicized to reflect site conditions and actual generator usage. These values are preferentially used in the data base.

If re-rating data are available after a unit is modernized or otherwise modified, new capacity values are entered in the data base without making any changes to service year or suppliers (also see below under “Repowering”.)

PLANT STATUS

The WEPP Data has 10 unit status codes: CAN = cancelled, CON = under construction, physical site work is underway, DAC = deactivated, mothballed, DEF = deferred, no long scheduled, DEL = delayed, construction was started but later halted, OPR = in operation, PLN = planned, still in development or design, RET = retired from service, STN = shutdown, UNK = operating status unknown. Every record in the data base has an assigned status code.

The codes are generally updated in logical sequence, e.g., PLN to CON to OPR, but there are various exceptions. For example, it may be that a unit thought to be under construction, is still planned, or that a unit thought to be operational has not, in fact, been completed. Also, projects thought to be retired may come back into service and projects coded as PLN may go directly to OPR.

There are no specific WEPP codes for terms such as “early development,” “advanced development,” “in permitting,” “in financing,” etc. CON usually means that site preparation has started and PLN is used to indicate that no onsite work is known to have started.

The completion of new power stations or changes in the operating status of installed
plant are often not publicized, particularly for smaller installations. Even if announced, the actual situation may be somewhat obscure.

When a power plant is released for regular operation, the WEPP status code is changed to OPR. There are different phrases used to signify operability. “Commercial operation” is often used for utility-owned plants, and this is taken to mean that new plant is available for full-load service per applicable regulatory guidance. Another common phrase is “turn-over”, which occurs when the engineering, procurement, and construction (EPC) contractors turn-over the power station to the operators for full-time operation. In the case of large-size central stations, there is often a contractually-defined reliability testing period, after which the facility is placed in commercial operation.

A commonly-used phrase is synchronization, meaning that a new generator is electrically connected to the grid. At this point, main power plant construction is generally complete and, in some countries, synchronization is taken to mean that a new unit is in operation. More often, however, testing continues for some time before the machine is released for full-time service. In many instances, a dedication or other official opening ceremony may be held well after a new plant is in operation.

There are numerous instances where the WEPP unit status is shown as OPR or STN and yet the facilities are, in fact, offline, either temporarily or for extended periods. Not infrequently, nuclear units may be offline for one or more years for safety modifications or other reasons, while large thermal and hydroelectric units can be shutdown for equipment retrofits and so on. These units are often shown in the data base as OPR regardless. If the operating company indicates that a facility is “mothballed,” the WEPP code DAC (deactivated) is usually used.

Another difficult aspect of the research involved in maintaining the WEPP data base has to do with the status of older generating units. It is not uncommon for hydroelectric units to run for 70 years or more, basically with the original equipment. Many steam-electric units have run for over 50 years and, depending on loading and other factors, diesel engines and gas turbines can remain operational for many decades. The phrases “decommissioned,” “deactivated,” and “shutdown” are used interchangeably by power companies and the trade press alike. Even plants that have been formally retired may come back into operation and it is only when a plant is demolished and/or the generating equipment scrapped or taken offsite that the facility can be said to be definitively removed from service.

The RETIRE field is used to list the year when a generating unit is definitively removed from service. Projected or announced retirement years are not entered into the data base. These dates are often subject to change.

Some older units in the WEPP data base are shown with status of UNK. There is a good likelihood that these units are now offline, if not retired, but more definitive
information is not yet available.

As with other fields in the data base, when new status information becomes available, the records are updated immediately.

SERVICE DATES

A topic of interest to many users is the year of actual or expected operation of generating resources. For reasons listed in the previous section, the service year may be difficult to establish, both for existing and projected plant. Unit-specific data obtained from power companies or other primary sources are preferentially used to establish the operation year.

Going forward, the number of projects cumulatively proposed for a particular year is always less than the number of projects completed, and this is true irrespective of unit size or technology. Just as many announced projects are never completed, it is often the case that the expected year of operation at the time when a project is announced slips forward in time, although plants are also completed ahead of schedule. The “completion” year of generating units as shown in the data base may lag actual operation by one or more years.

A routine research task is establishing the status of units due for completion in a particular year. Starting at the beginning of the current year, every unit for the preceding “year class” where status has not yet been switched to OPR must be examined to establish its status. Since there are typically on the order of 3,000+ records in this category, and the data on completion status and year-on-line are often obscure, the research typically takes about 6 months to complete. The N American file is cleaned first, usually by the March WEPP release. No particular assumption can be made as to whether a projected unit will actually go online in the year indicated as this varies considerably by size, location, and technology.

Note that various actions may be taken during the annual status/year review process: 1) records may be switched STATUS = OPR, 2) the year may be changed without STATUS change (mostly the year will slip forward, but some units are found to have gone online at an earlier date), 3) the YEAR and STATUS code change, or 4) the units may be found to have been cancelled or deferred, with the appropriate STATUS change, and the YEAR field goes to null.

There are many data base records where the year-on-line is blank, indicating that no actual service year or reliable completion estimate is readily available. As with other fields in the data base, when new year-on-line information becomes available, the records are updated immediately.
NEW PROJECTS

The WEPP data base is not a forecasting tool, nor is it populated with power plant data derived from or power demand and/or capacity modeling exercises or other estimating processes. Typically, there are many fewer new-plant references past about five years from the data base release date. This does not necessarily mean that there are that many fewer new generating stations that will be built in this time-frame, only that there are no specific data points to support plant-level data entry.

Traditionally, the construction of large power projects in fully-developed economies was driven by requirements to replace older plants and meet load, thus imparting a cyclical nature to the deployment of new plant as large-capacity units were added in step-wise fashion. In developing countries, the construction of new power plants is generally driven by rapid increases in load growth, in turn largely a function of overall economic development, and the availability of funding.

More recently, shifts in the cost and availability of fuel and local or national policy directives have been added as key drivers for new plant construction and the plant size and technology mix has changed in many markets. It has become increasingly difficult to establish the boundaries of the sequential construction cycles as larger integrated markets are formed (as in Europe, for example) or as new policy or financial imperatives come to the fore, climate change initiatives and the large increase in North American shale gas production being prominent examples at present.

The decision to include new power projects in the WEPP data base is important for users and the decision to add a new project to the file is made on a case-by-case basis. Key determinants in approximate order of importance are: 1) order placement for generating equipment or EPC services, 2) the status of licensing or permitting activities, 3) funding, and 4) the availability of fuel and/or transmission access. Projects may also be included even if such data are lacking if there are generalized national or regional policies that are driving power plant development.

Schedules naturally firm as permitting is completed, equipment is ordered, and construction starts. This makes data for the near-term (2-3 years) more reliable than data for plants expected online in out-years. There are relatively few scheduled references past 2018. The data base does, however, include records for a very large amount of unscheduled generating capacity (see below).

Another factor to consider is facility size and technology. Larger projects have longer lead times, and thermal, nuclear, and hydroelectric plants have longer lead times than plants using technologies allowing for a larger amount of modular fabrication and assembly, such as gas turbines and IC engines. This allows for somewhat more accurate, medium-term enumeration of expected service dates for larger, more complex projects as opposed to small thermal, hydro, or renewable plants.
In cases where only main equipment order dates are available for larger steam-electric and hydraulic units, the data base has a year-in-service date of three years after the order date. For gas turbines, the data base uses a two-year construction duration estimate. For engines and small hydro units, service year is assumed to be order or delivery year.

UNSCHEDULED CAPACITY

The matter of unscheduled generating capacity in the WEPP data base is concerning to users attempting to estimate forward capacity additions. As already noted, there have always been announcements of plans for new power stations (and other industrial facilities) that never come to fruition, or, in fact, never progress past an announcement or expression of interest. In the United States, this first became a significant issue with passage of the Public Utility Regulatory Policies Act (PURPA) in 1978. This essentially opened the door to generation competition in the electric power industry and ultimately resulted in the deployment of about 70 GW of non-utility generation, much of which remains online. Less remembered is the fact that many hundreds of additional PURPA power plants were announced, only to disappear with hardly a trace.

There have been other instances of similar boom and bust cycles of power station development. More or less contemporaneous with the PURPA cycle was the wind-up and wind-down of a very large nuclear power development program in the USA. This was followed in some of the OECD countries by a “dash for gas” and the build-out of large numbers of combined-cycle power stations. Then came the rise of the IPP concept in developing countries, which led to large numbers of inexperienced industrial and commercial entrants into the generation market. Most recently, came the implementation of renewable energy purchase obligation schemes in many countries, followed by the construction of thousands of wind, solar, and bioenergy generators.

As these booms wound down, many countries were left with substantial capacity overhangs, skewed fuel mixes, and high-cost structures in the generating sector. The inevitable result was that many proposed projects were simply abandoned.

The clean-up of abandoned generation plant in the WEPP data base is an ongoing process. As a general matter, larger facilities that are unreported online for five years or more are presumed cancelled, or at the very least deferred with the decision to re-code as CAN or DEF being made on a case-by-case basis. In recent years, the addition of wind or solar resources in OECD countries to the data base solely on the basis of an announcement has been curtailed.

GEOGRAPHIC INFORMATION

The WEPP geodata are contained in five fields, CITY, STATE, COUNTRY, AREA, SUBREGION, and POSTCODE. These are defined in the WEPP data file directory (DFD) spreadsheet included with the data base documentation (unitdoc.xls). Lat/Long
data or other more specific geodata are not included in the data base. The WEPP
geodata are being progressively backfilled and standardized as time and research
resources permit.

To the extent possible, the formal names and/or abbreviations for states, provinces,
counties, etc., are used according to international standard ISO 3166 and/or usage by
the Universal Postal Union. The Statoids website (www.statoids.com) is a
comprehensive and useful reference for such geographic data.

On occasion, new national affiliations are required in the WEPP data base to reflect
alternations in relevant governmental authorities. One such reorganization, and the
largest in recent times, was the break-up of the Union of Soviet Socialist Republics
(USSR) in December 1991. This led to the spin-off of many “new” countries in Eurasia
and the Baltics, namely Armenia, Azerbaijan, Belarus, Estonia, Georgia, Kazakhstan,
Kyrgyzstan, Latvia, Lithuania, Moldova, Russia, Tajikistan, Turkmenistan, Ukraine, and
Uzbekistan. The break-up of the USSR was officially preceded by the reunification of
the former East Germany and West Germany in 1990.

Another notable geopolitical event in Europe was the dissolution of Czechoslovakia,
which took effect in January 1993 and created the Czech Republic and the Slovak
Republic.

The formal break-up of the former Socialist Federal Republic of Yugoslavia (FRY) was a
prolonged process beginning in 1992. This initially resulted in the creation of six new
countries, Bosnia and Herzegovina, Croatia, Macedonia, Montenegro, Slovenia, and
Serbia. These new countries were followed by Montenegro, which left Serbia up in 2006
and became independent, and Kosovo, which proclaimed independence in 2008.

In May 2002, Timor-Leste (East Timor) became independent from Indonesia.

In July 2011, South Sudan peacefully seceded from Sudan following a January 2011
referendum.

As noted, dependencies and territories are usually listed as if they were separate
countries. Sub-national political subdivisions are referred to by many names such as
state, province, department, canton, prefecture, county, and so on. On occasion, there
are wholesale revisions to state or provincial names used in the WEPP data base. This
may result from small-scale reorganizations or changes in nomenclature, or may relate
to large-scale political events.

In the latter category is the continuing creation of new states in India. Three new Indian
states were created in 2000: Chhattisgarh was created out of eastern Madhya Pradesh,
Uttaranchal, was created out of the districts of northwest Uttar Pradesh, and then
renamed Uttarakhand in 2007, and Jharkhand was created out of the southern districts
of Bihar. In February 2014, creation of India’s 29th state Telangana was approved by
India’s Parliament for creation from 14 districts of Uttar Pradesh. The new state came into being in June 2014.

In Indonesia, eight new provinces have been created since 1999.

A related issue is the matter of extra-territorial statelets and other areas of uncertain national identity. Most well known perhaps is Palestine, normally taken to comprise the Gaza Strip and parts of the West Bank, but there are other examples as well such as Transnistria, either part of Moldova, or quasi-independent depending on the source, Abkhazia and Tskhinvali (South Ossetia), originally part of Georgia and occupied by Russian troops from 1992/1993 forward, and, most recently Crimea, annexed by Russia in March 2014. A similar situation, but of longer standing is the Nakhchivan Autonomous Republic, an exclave of Azerbaijan.

Most territorial re-organizations involve some modification of WEPP data base coding. This may involve a full country name change or a state-level adjustment. It is important to note that there are often intense disagreements among the affected parties as to the “correct” nomenclature of territorial adjustments and there is generally no standard agreement or guidance at hand. For example, the “occupied” sections of Georgia have been left in Georgia, whereas Crimea was “moved” to Russia shortly after its full annexation by the Russian Federation in March 2014.

City, state, and country names are in the WEPP data base are generally anglicized according to common usage, but there are exceptions as described below. Note that many electric power plants are located far from population centers and, as a result, the listed “city” can be at some considerable distance from the actual plant site. Also, the listed city may well be a town, municipality, township, commune, district, village, or another type of political subdivision.

In some instances, local abbreviations are used for geographic subdivisions. For example, “district” is a common term in many countries and is abbreviated “Dist” in the WEPP. In Indonesia, which has one of the world’s most administratively complicated physical territories, a district is also called a regency, within which are cities and other municipal divisions. In the data base, the Indonesian abbreviations are used for lower level geographic subdivisions e.g., “kabupaten” (or Kab for regencies or districts), “kecamatan” (or Kec, for sub-districts), and “kotamadya” (or kota, for municipalities). Indonesian words for geographic orientation are also frequently employed (e.g., “utara” north, “timur” east, and so on).

Another complication is the fact that the relative precedence of political and geographic subdivisions differ from country to country. In most larger countries, for example, a county or district is larger than city or municipality. In China, however, cities are larger geographically than counties. Also, due to field length constraints, a number of China-specific geographic abbreviations have been used. These include AC (autonomous county), AP (autonomous prefecture), and AR (autonomous region).
In Chile, the country’s political regions are interchangeably known by a geographic descriptor and by a Roman numeral, vis., Tarapaca is Region I, Antofagasta is Region II, Atacama is Region III, and so on. The WEPP data base uses the Roman numeral scheme.

Although foreign-language descriptors are not necessarily used in all instances, there are continuing efforts to make them consistent within countries.

The field POSTCODE was added to the data base with the March 2011 WEPP release. As available, this field is used for the numeric or alphanumeric postal code for plant locations using the format appropriate to the respective countries.

ABBREVIATIONS FOR VENDORS AND DESIGN DATA

By some measures, electric power is the world’s largest industrial sector. This is reflected in the very large number of companies that supply equipment and services to power companies. Advances in technology and changing policies have likewise resulted in a proliferation of fuels and electricity production technologies.

Over 25+ years of operation, data base coding and abbreviating conventions have naturally been modified and necessarily expanded to reflect this industrial diversity and the WEPP List of Abbreviations now has over 12,000 entries. The list is reissued each quarter and included with the data base documentation.

To the extent possible, the original vendors for power plant equipment or services are indicated in the WEPP data base irrespective of whether the companies exist today with that nomenclature. In some cases, predecessor companies are indicated in the List of Abbreviations. The type of service or equipment supplier (such as EPC, boiler supplier, hydro turbine supplier, IC packager, and so on) and country of origin is frequently included in the abbreviation description.

Boilers, reactors, turbines, and generators for large steam-electric generating units are generally built by one company, as are aeroderivative and frame gas turbines. There are some instances where steam turbine stages or generator components have been changed out and replaced by equipment from a company different than the original equipment manufacturer (OEM). HRSGs are also sometimes built by two companies. In these cases, a compound abbreviation may be entered.

Turbines and generators for hydroelectric generating units are generally built by one company, but there are more instances than with steam-electric units where different components are built by different companies. For example, turbine runners may be built by one company and the balance of the mechanical equipment by another. This is more frequent for smaller equipment. In these cases, a compound abbreviation may be entered. It is also frequently the case that the runners may be rebuilt or replaced by a different company. This circumstance is covered below under “Repowering.”
Diesel or gas engines and small to medium-sized gas turbines are often packaged by a third party. In some of these cases, the equipment OEM is not readily identifiable, or may be identified sometime after the data are first entered into the WEPP data base. In any event, OEM is indicated if possible and, if not, the packager is shown. If both companies have been identified, a compound abbreviation may be entered, with the OEM shown first and the packager shown second.

In an analogous situation, there are often multiple engineering and construction contractors working on larger power plant projects. In these cases, complicated abbreviations may be required to identify the major participants. Note that the actual proportion of material or other resources supplied to a particular project cannot be estimated from any data in the WEPP, nor are all major participants necessarily indicated in the abbreviations.

Finally, WEPP abbreviations may change over time. This is usually done when new information becomes available, but existing abbreviations can also be changed to reflect common usage (company acronyms, for example), or to reduce confusion between similar company names. Regional subsidiaries of multinational companies are generally not given their own abbreviation, however predecessor companies that may have been acquired and subsequently rolled up to the parent company may still be listed as originally designated.

BTG TYPES AND MODEL NUMBERS

The WEPP data base has three fields for boiler, turbine and generator (BTG) details, BOILTYPE, TURBTYPE, and GENTYPE. The GENTYPE field was added to the WEPP file with the March 2011 release; the other two fields have been in the data base since inception.

As with many other WEPP fields, coding conventions for the BTG type fields have evolved over time in order to supply more specific information to data base users.

Initially, BOILTYPE was used to show steam-electric firing configuration for conventional boilers, essentially the orientation and arrangement of the burners, the type of HRSGs for CCGT plant, or the type of nuclear reactor in use. In many instances, this is still the case. Over time, different data became available, particularly from countries with steam generators supplied from Russia, and in these cases boiler model numbers were entered in lieu of firing configuration. For reactors, BOILTYPE for nuclear units showed PWR or BWR and other generic codes. In recent years, more specific data has been entered reflecting either advanced reactor technologies (EPR or AP1000 for example) or new series development as in the Chinese CPR-1000 standardized design.

In most conventional fossil or renewable fuel steam-electric plants, the “boiler” comprises a single component with fuel combustion taking place within the boiler body.
There are, however, instances where the boiler (steam generator) is downstream of the furnace where fuel combustion takes place. The most common occurrence is an HRSG placed downstream of the exhaust of one of more gas turbines or diesel engines. Other examples with industrial waste heat or waste incineration are discussed elsewhere in this document.

TURBTYPE was designed to track engine and turbine information. Initially, this included model numbers for gas turbines and IC engines, type of turbine and turbine orientation for hydraulic turbines, and details about stages and blading for steam turbines. For wind plant, the field was used for WTG model and/or size. For other technologies, such as photovoltaic or fuel cell power plants, TURBTYPE is also used for descriptive data.

Over the last 60+ years, hundreds if not thousands of engine and turbine model numbers have been used in the power industry, and these are not necessarily well standardized, either by suppliers or in the WEPP.

GENTYPE was designed to track generator voltage and cooling. As with TURBTYPE, specific model numbers may also be used. Since GENTYPE was only added to the WEPP data base in Q1, 2011, these data are quite incomplete and will be backfilled as time and research resources permit.

SMALL PLANTS AND DISTRIBUTED GENERATION

For much of its existence, the development of the electric power business has been characterized by the steadily increasing size of deployed generating units, a process continuing to this day with wind turbine generators, solar power plants, and more esoteric renewable power generators such as wave or tidal generators. In part, this is due to the increasing manufacturing and engineering capability of the industry and in part to perceived economies of scale in power plant construction and operation. Nonetheless, from the beginning of large-scale deployment of new plants and through to the present day, tens of thousands of small thermal and hydroelectric power generators have also been built, particularly in remote locations or for specific industrial or commercial applications. These small facilities are often termed distributed generation (DG).

Compilation of DG plant data is complicated and time consuming due to their great number and diverse ownership. From the beginning, the WEPP was designed to include information on power plants of any size, but it must be admitted that the true scope of the research for small plants was incompletely appreciated in the early years of data base development. The result is that while the data base has a very large number of small units – nearly half the records are for facilities of 5 MW or less – there is often no way to say what coverage this represents since there is no more complete listing extant.

The expansion and refinement of small plant data in the WEPP is undertaken on a time-available basis. As a general matter, the WEPP commercial customer base is more
interested in larger plants, since these facilities spend more in absolute terms on fuel, equipment, and services. That said, it is also true that, in aggregate, small plants are of significant commercial importance, because of the original investment, continued operational expenditures, the value of their power production in local electrification, and their use of non-conventional fuels that may be available in limited quantities.

Another important point is that small power plants are easier to buy and sell due to the overall level of investment required. This has given rise to active secondary equipment markets in many countries.

Overall, small-plant data in the data base tend to be more complete where they are of more significance. The two leading instances are: 1) smaller countries lacking well-developed centralized power systems, where local utilities and other authorities build the DG capacity; and 2) larger countries with expanding demand where commercial and industrial autoproducers have built captive power plants to supplant grid supplies.

In very large economies, there are many thousands of installed diesel and gas engine gensets that are not listed in the WEPP. It is impossible to give any meaningful estimate of their number or capacity.

CHP AND COGENERATION

Combined-heat-and-power (CHP) and cogeneration power plants have been built in large numbers around the world. (These terms are essentially synonymous in common usage and CHP is used hereafter.) CHP facilities are difficult to accurately portray in the WEPP data base. In part, this has to do with complications associated with the characterization of the fuels used in CHP plants and in part due to complex engineering and energy flow processes associated with CHP applications.

The CHP concept revolves around the utilization of recaptured heat energy derived from the combustion of fossil fuels that would otherwise be dissipated to the atmosphere or to condenser cooling water. This so-called waste heat can be used to generate steam and/or heat water, or used as-is for specialized drying or heating applications in industrial processes.

Oftentimes, steam is also taken off back-pressure and extraction steam turbines for use in CHP applications (UTYPE = ST/S). The steam so removed may be used directly for industrial purposes or for heating. Waste heat is also derived from the exhaust of gas turbines which is passed through an HRSG to generate steam for a steam T/G set (GT/C) or through some other type of heat exchanger for hot water production, absorption chillers, feedwater heating, desalination, or other applications (GT/D, GT/S or GT/T).

The HRSG may include supplementary firing capabilities from its own burners which can generate steam above the quantity otherwise allowed for by the GT exhaust (so
called fired HRSGs, BOILTYPE = HRSG/F). In almost all instances, fired HRSGs burn natural gas in which case ALTFUEL = NONE. In some cases, specialized waste gases are used for supplementary firing, in which case ALTFUEL may be another fuel type. Until 2004 or so, the supplier of HRSGs for non-combined cycle, gas-turbine based CHP plants was not included in the WEPP data base. Subsequently, this information has been added on an as-available basis. Only the BOILTYPE (HRSG) and HRSG supplier are indicated in the instances, meaning that steam conditions and cooling system data are not included for these installations.

The use of CCGT plant for combined heat and power applications is now more commonplace and, in 2009/10, new data base new coding was added to account for this usage. Gas turbines installed in CCGT/CHP plants are now coded as GT/CP and the accompanying steam sets are now coded as ST/CP. Also, for CCGT power stations installed to supply desalination plants with thermal (or electrical) energy, the gas turbines are now coded as GT/CS and the accompanying steam sets are coded as ST/CS. These codes are being retroactively applied as time permits. It is not known how many installations remain to be re-coded.

One further complication encountered in coding CCGT plant may be noted. There are numerous instances where gas turbines are installed for simple-cycle operation with the intent for subsequent conversion to combined-cycle. In most cases, this conversion follows directly from completion of the simple-cycle machines and construction is done on both the gas and steam components sequentially. In these cases, the gas turbines are coded GT/C and the steam turbines ST/C.

There are two instances where combined-cycle conversion the coding for the gas and steam turbine components in CCGT plants is disjunct. First are cases where a combined- cycle conversion is planned at a site after one or more gas turbines have already been in service for an extended period. In the second instance, a site is planned for build-out as a CCGT block, but the steam components are planned for future installation well after the plant goes online in simple-cycle. In both these instances, a CCGT steam turbine (ST/C) may be included in the WEPP data base without the corresponding gas turbines being coded as GT/C since they are (or will be) operating in simple-cycle. At such time as the steam-electric components are added, the GT coding is changed to GT/C to reflect that fact.

Many smaller CHP plants use liquid-fueled or gas-fired internal combustion engines (IC, also termed reciprocating engines). In this case, there is less waste heat available and the heat is of lower quality. Heat is typically recaptured from the engine jackets using heat exchangers, which then supply hot water for district heating.

While most IC-based CHP plants in the WEPP are coded with UTYPE = IC/H, there are a small but growing number of engine-based, combined-cycle plants. These typically have large engines and small T/G sets reflecting the lower-quality waste heat available. As with gas turbines, the waste heat from engine exhaust can also be used as-is for
drying and specialized heating applications. In 2009, new data base codes were also introduced for IC-based combined-cycle plants for both engines and their associated steam T/G sets.

SPECIAL FUELS AND GENERATING TECHNOLOGIES

Power companies and national governments have long been interested in maintaining diversity in their fuel mix, both for supply security and to minimize production costs. For the last 10-15 years, there has also been increasing interest in using lower-carbon fuels and waste gases or other by-products of industrial production. In combination this has caused a considerable increase in the use of biomass, municipal waste, and industrial off-gases, both in purpose-built power stations and in co-firing applications, as well as the use of industrial or geothermal heat sources capable of sustaining the generation of electricity in commercial quantities.

Tracking and recording fuel for purpose-built biomass or waste-to-energy (WTE) power plants is relatively straightforward in that fuel choice was built into the design from the beginning. The use of such fuels in existing steam-electric plants retrofit for alternated solid-fuel consumption is more difficult to track. Furthermore, in many instances, the use of biomass or waste fuels in existing plant may be insignificant in terms of heat input or done only on an experimental basis. The entry of BIOMASS, WOOD, REF, etc., in the ALTFUEL field may indicate that the material is in use, is planned for use, and/or has been used, and there is no way to establish from the WEPP data base the current usage pattern.

One of the most important “special fuels” used for power and heat generation worldwide is municipal solid waste (MSW). Hundreds of millions of tons of MSW are produced each year consisting of a mix of recyclable, combustible, and inert materials. Processed or unprocessed MSW and similar industrial or commercial wastes are used as fuel for energy production in waste-to-energy (WTE) electricity and CHP plants. The WEPP data base has information for approximately 1,100 WTE generating units with electricity output. WTE plants that supply thermal energy only (as steam or hot water) are not covered in the data base. (WTE plants are also termed energy-from-waste (EFW) plants in some countries.)

WTE power plants are essentially of conventional steam-electric design, but there are some notable differences from standard plants. All new WTE plants in OECD countries must meet particularly comprehensive emission standards and so modern WTE power stations are both technologically complex and very expensive to build and operate. Typically, the back-end emissions control systems are elaborate featuring multiple particulate collectors, various types of dry or wet scrubbers for acid gas and volatile organic compounds (VOC) control, selective catalytic converters (SCR) or other NOX control devices, and, increasingly, activated carbon filtration for mercury control.

Waste fuel handling and incineration is also complicated. In many cases, one supplier
will build the actual incineration equipment, the furnace, and a second supplier will make the steam generator, or boiler. In these cases, compound WEPP abbreviations may be required to indicate both suppliers. There are many different combustion methodologies used, some on an essentially experimental basis. Mass-burn plants using unprocessed MSW are by far the more common. Refuse-derived fuel (RDF) is processed MSW and offers uniformity in sizing and heat content, but, for various reasons, RDF plants have not been widely deployed. WTE plants use stoker grates of various designs, fluidized beds, fixed and rotating kilns, CFBs with integrated gasification and ash melting, and other more exotic combustion techniques.

On the electric side, WTE plants tend to be small in terms of electric output and use low pressure and temperature equipment. T/G sets are of otherwise conventional design.

One other notable feature of WTE plants is essentially continuous maintenance of the combustion trains (organized in “lines”) and other plant elements due to hard usage handling corrosive materials and/or changes in legal requirements. This requires proportionately higher equipment operating investments than for almost any other type of power generation facility.

Biomass power stations have been built in large numbers worldwide for many decades. Early on, these plants were typically small and associated with sawmills, pulp and paper plants, packaging factories, boardmills, and sugar mills. Starting in the 1980s, there was increasing interest in building utility-scale biomass power plants primarily for power generation, as opposed to waste disposal and onsite electric or thermal power supply. Over the last decade, there has been a further large tranche of biomass power plants developed to meet low-carbon and sustainable energy policy goals, although many have also been built to replace old plant built at industrial facilities.

The main biomass fuels in use globally for power generation are wood and bagasse. Fuel wood is often available in substantial quantities from existing wood-processing facilities in many areas and comes in many forms such as woodchips, bark, sawdust, solid offcuts from milling, and wood shavings. Other wood fuels include trimmings and larger materials from forestlands, plantations, and urban green spaces plus a handful of facilities burning plantation-grown willow and similar plants. These varieties of fuel wood are not typically further sub-coded in the WEPP. Wood and woody biomass can also be gasified with the resulting syngas used in gas engines or other combustors. This is an technically-demanding and expensive process and has not been widely utilized.

There are many different agricultural waste products that can be burned to make useful amounts of electricity. The most prominent is bagasse, the fibrous residue from sugar cane pressing. This material is difficult to burn, but is seasonally available in very large quantities in cane-growing areas. The WEPP data base has records for over 600 operating bagasse-fueled power stations in 60 countries and territories. The listing is known to be considerably incomplete in Brazil and India.
Secondary biomass fuels include other agricultural waste products such as nut shells, rice husk, oil palm residues, olive processing wastes, and corn stalk. Straw is both a waste product and now purpose-cultivated for power generation in a few locations. Some of the specialized agricultural wastes are coded separately.

Also in this category are liquid biofuels. These include palm oil and products from other oil seeds plus recycled vegetable oils. There are used in small quantities for power generation, but their use has not expanded very rapidly for various reasons.

There are approximately 400 installed and projected geothermal electric power plants in about two dozen countries. Geothermal resources have been used for power generation for nearly a century, starting in Italy. There is also a large amount direct geothermal energy usage for district heating, space heating, spas, industrial processes, and agricultural applications but these facilities are not covered in the WEPP. Geothermal power stations have elaborate well drilling, maintenance, and piping requirements.

Geothermal power is generally cost-effective and reliable, but limited to locations with accessible reservoirs of geothermal steam or hot water that can be used for power generation. Electricity can be generated using steam piped to the surface and “flashed” through a modified steam turbine/generator set or lower-grade heat from geothermal hot water can be used in ORC applications. In the latter instance, multiple smaller turbines may be ganged together and listed en bloc in the data base. Few geothermal turbines are over 100 MWe in capacity.

Useful waste heat flows (i.e., of sufficient volume to support power generation) may result from exothermic or other industrial processes in the metals, chemicals, cement, or other heavy industries. For electric power production in these instances, the hot gas flows are passed through an HRSG and then used to make steam for a steam T/G set as in the example above. In these cases, the only WEPP record is the steam T/G set and the actual “fuel” (that is, the actual industrial process resulting in waste heat production) is not listed.

Biogenic waste gases (BWG) are increasingly important as renewable fuels for power generation. There are three in widespread use: landfill gas, biogas, and digester gas.

Landfill gas (WEPP fuel abbreviation = LGAS, often abbreviated in the literature as LFG) was the first BWG in full commercial use in power plants designed for offsite power delivery. There are over 1,200 LFG power plant sites in almost 70 countries in the WEPP data base. These plants are almost always purpose-built for power generation and tend to have medium-sized gas engines in simple-cycle service, although there are some gas turbine plants and a few steam-electric plants in service as well. WEPP coverage is comprehensive.

Biogas (WEPP fuel abbreviation = BGAS) is growing in importance for power production and is widely used in Western Europe. By definition for the WEPP data base, biogas is
produced through anaerobic digestion of agricultural or livestock waste products, purpose-grown energy crops, or food product waste. There are about 1,200 BGAS power plant sites in the WEPP database. These plants typically use one or two small gas engines in CHP configuration and are run by agricultural processing facilities, farms, and cooperatives of various kinds. WEPP coverage is representative.

Sewage or wastewater digester gas (WEPP fuel abbreviation = DGAS) has been used for onsite power and heat production for many years, mostly in OECD countries. By definition for the WEPP database, DGAS is produced through anaerobic digestion of solids collected and processed at wastewater treatment plants (WWTP). Most of these facilities are run by water companies and municipal water and wastewater authorities. There are almost 500 DGAS power plant sites in the WEPP database. These plants typically use one or two small gas engines in CHP configuration, but there are also some gas turbines and fuel cells in service with DGAS. WEPP coverage is representative.

After a long hiatus, development has re-started on solar collector and solar tower facilities for electric power production. These plants use large fields of trough collectors or mirror fields to concentrate solar energy on receptor tubes filled with a working fluid. The high-temperature liquid is then used to generate steam in a heat exchanger unit and in turn, the steam is used in a conventional steam turbine. In most cases, supplementary firing with natural gas is used to maintain even heat flows.

Small-scale biomass boilers, biogas engines, and miscellaneous heat sources such as natural-gas pipeline compressors and low-temperature geothermal resources can be utilized for electricity production using organic Rankine energy converters (ORC). Typically, the ORC converters use butane or pentane as the heat-exchange medium instead of water. Individually, ORC installations have small electric output, but, as noted above, the devices may be ganged together into larger installations. Data base coding for ORC plant is somewhat complicated. The facility may be boiler based, in which case there is a boiler manufacturer, boiler type and – typically for biomass plant – APC equipment. For geothermal plant, there is no boiler and no APC equipment. Both boiler and geothermal ORC installations need cooling systems. There are also engine-based ORC generators. In these instances, there is also no boiler and no APC equipment and also no heavy-duty cooling requirement. In all instances, TURBMFR contains the name of the ORC module supplier. The engine supplier is not indicated for engine-based ORC schemes. WEPP coverage of ORC generating plant is comprehensive.

Another specialized, small-scale generating technology is the steam engine. These were commonly used in the early days of electric power plant development. There are quite a number of modern steam engine power generators in service, mostly in Europe and many with non-conventional fuels. WEPP coverage of these units is sparse.

A somewhat related technology is the Stirling engine. Stirling engines are driven by the
heat generated from an external combustion source or heat exchanger and, by definition, are always a combined heat and power (CHP) technology. Fuels can include syngas from wood gasification, product gas from anaerobic digestion, other biogas, low-heat content fossil gasses, bio-oils, and waste heat. Stirling engines can also be incorporated into concentrated solar power installations. Although Stirling engine installations may use fossil fuels and require some type of external cooling, they are coded in the WEPP data base without boilers, steam, cooling, or air pollution control equipment. The individual Stirling engines are typically very small capacity (ca 35 kWe/engine) and are listed in the data base as ganged units (1&2, 1-4, etc.) There are only a few suppliers.

REPOWERING

Main generating equipment and ancillary systems may be reused for the development of new generating capacity at existing power plant sites. Due to the variety of different approaches in use, this activity is difficult to portray accurately in the WEPP data base and the unit coding scheme has evolved over time.

For thermal plants, existing steam-electric turbine generator sets may be partially or completely repowered. In partial repowering, one or more new boilers or one or more new gas turbines with one or more HRSGs are installed to drive the steam set. The resulting steam flow may also be added to steam from an existing conventional boiler. In either instance, the steam T/G set is essentially unchanged and the WEPP data base record for this machine is left with the existing data for year online and steam conditions.

In full repowering, the existing boiler is removed or disconnected from the rest of the steam-cycle equipment and is replaced by one or more new boilers (such as fluidized-bed equipment) or HRSGs. There are then two possibilities for the existing steam T/G set -- the machine is substantially modified during the repowering development or it remains generally as it was before. If, as is usually the case, there have been substantial mechanical or electrical modifications to the existing machine and auxiliaries, the existing T/G data record is “retired” and a new record is added. Sometimes, the data for the steam set is left as-is and the new boiler data is added to the data base record.

The names of repowered units typically include the phrase “RP” or “REPOWER.”

A repowering variant is the use of gas turbine exhaust to provide combustion air or to preheat boiler feedwater for conventional steam-electric units. In these cases, most if not all the additional capacity at the plant site is from the new “topping” gas turbine (GT/T), while the benefit to the steam-electric cycle is generally in increased thermal efficiency from the reduction of parasitic electric or thermal load.

For hydroelectric plant repowering, the same general approach is used. In cases where
completely new mechanical and/or electrical equipment is used in existing civil works, the old unit records are retired and replaced by new records. In most cases, it is not clear whether or not the main electro-mechanical components have been replaced in their entirety. In any event, the names of the new records typically include the phrases "NEW" or "REBUILD" or the unit number may be followed by an "R" as in 1R, 2R, etc. If it is known that the existing machinery was refurbished, but otherwise left largely unchanged, the existing supplier data is maintained as-is and only the unit generating capacity is changed to reflect the new rating.

EQUIPMENT RETROFITS

As-built main power plant equipment is frequently modernized, retrofit, or changed-out during a plant’s operating lifetime. Typical activities relevant to the WEPP data base include changes in primary or alternate fuels, turbine or generator rebuilds and modifications, air pollution control (APC) equipment retrofits and modernization, and additions to main condenser cooling systems.

Information on such modifications and retrofits is only included in the data base when the work is actually completed and so noted in primary or secondary reference materials available to data base research staff. As a result, the data base record for a particular generating unit may not be updated for some time after new equipment has been installed and put into operation.

For thermal and hydroelectric plants, there are occasions when new suppliers are called in to extensively modify existing turbines or generators. In these instances, a compound abbreviation is often used to indicate the major manufacturers.

AIR POLLUTION CONTROL EQUIPMENT

The purchase, installation, and operation of power plant air pollution control equipment requires a significant investment of money and staff resources. Such equipment is most elaborate on coal-fired and WTE power plants, but some types of controls are installed on the majority of recent-vintage facilities using solid and liquid fuels as well as on modern gas-fired plant. About a quarter of the initial investment in new coal-fired units is routinely used for emission controls, but, in addition, some published estimates state that such equipment takes half of a power plant’s annual O&M budget.

For conventional power stations, there were traditionally three main concerns, particulate matter (often called soot for oil-fired plant), sulfur dioxide, and nitrogen oxides (NOX). Over the last decade or so, mercury emissions have also become a pollutant subject to increasing stringent controls in OECD countries.

WTE power plants generally must control additional, more exotic organic and inorganic compounds resulting from the consumption of municipal waste.
In order to control emissions of these various pollutants, power companies have installed a bewildering array of post-combustion pollution control equipment while also investing in various in-boiler equipment modifications and more sophisticated instrumentation and control equipment. Many complicated compound WEPP data base abbreviations have been developed to attempt to account for this variability.

Insofar as the WEPP data base is concerned, there are a number of important points to keep in mind. For conventional power plants, a blank in one of the three fields used for pollution control equipment, namely PARTCTL, SO2CTL, and NOXCTL, does not indicate lack of equipment, only lack of information for use in the database. There are probably few large-scale coal, WTE, or other solid- fuel electric power plants remaining in the world with uncontrolled emissions. In a somewhat analogous situation, all larger power plants in OECD countries (and in most cases elsewhere) are required meet applicable air emission control regulations. Again, the WEPP data may or may not reflect the equipment or processes in place and/or actually in use. In addition, power plants routinely add new equipment, replace existing equipment, and/or implement site-specific modifications of one kind or another to improve control efficiency or plant operability.

Data base research for these types of activities is undertaken on a time-available basis and the relevant data base fields may be quite incomplete for coal-fired plant in China, India, and Russia. To reiterate, a blank in one or more of the APC fields does not mean the generating unit is uncontrolled for that particular emission.

For power plants exclusively using liquid or gaseous fuels, the baseline situation is different. Large steam-electric plants designed for heavy-fuel oil combustion or dual-fuel operation (with natural gas) were built in some numbers in the 1970s and 1980s and these mostly have particulate control equipment: some were later retrofit with FGD scrubbers and many have NOX controls. Large LNG- and gas-fired steam-electric plants built over the last 20 years or so usually have NOX controls, as do gas turbines and CCGT plant. On the other hand, older gas and oil plant may have no controls, or only rudimentary particulate collection equipment. In some cases, it is known that there is no APC equipment installed, and this is so indicated.

Oil-fired and dual-fuel diesel engines are a special case. Many of these are quite large and burn heavy fuels. By data base coding convention, the WEPP fields for particulate and SO2 control are N/A for these gensets. In fact, many have particulate filters and some are scrubbed. Many also must meet stringent requirements regarding the sulfur content of their fuel(s). A few data base IC plant records show specific APC equipment information.

POWER BARGES AND POWERSHIPS

Modern power barges are purpose-built vessels mounting one or more steam-electric units, gas turbines, combined-cycle blocks, or, most commonly, reciprocating engines.
They were initially developed during the Second World War for near-shore electricity supply. Several dozen power barges have been built and deployed over the last three decades. More recently, the powership has been developed. As opposed to a barge-mount plant without its own motive power, the powership is a re-purposed freighter or bulk carrier that remains fully ocean-capable. These can be large craft displacing as much as 75,000t. A third variant of floating power plant is the barge-mounted nuclear reactor. At the moment, these are only found in Russia and are essentially treated as land-based power stations in the WEPP data base.

Power barges may be deployed in a semi-permanent fashion, essentially grounded at their mooring, or may remain fully independent at their deployment location. Powerships remain moored at conventional quays and jetties. In either case, they can have all required transformers and switching devices or connect to such facilities on land. Virtually all power barges are fueled with diesel or fuel oil and bulk fuel storage is often ashore. Power barges and power ships can be built to provide baseload or peaking service.

Power barges and powerships are covered in the WEPP data base, but there are several complications deriving from their mobile nature. First, these craft can and do relocate. Depending on circumstances, the data base record may be maintained and the plant “re-located”. If major refurbishment or other modifications are made, the original record may be retired, as would also be the case if the equipment is scrapped.

Nomenclature is also an issue. Some power barges are simply numbered, while other power barges and powerships are named. The name in common usage is typically chosen for the WEPP data base.

Generating equipment onboard power barges and powerships varies considerably. For larger prime movers, the individual components are itemized in the WEPP data base. For diesel gensets, the individual engines may be itemized, or all the engines grouped into a single record depending on circumstances. Some of the floating power plants have a mix of different engine types and/or engine vendors.

PHOTOVOLTAIC AND WIND ENERGY PLANTS

The advent of widely-dispersed photovoltaic (PV) systems and small-scale, distributed wind energy plants has become an issue for WEPP data base coverage. In the case of PV plant, this is particularly true due to the very small generating capacity of many installations and their increasing rate of deployment worldwide. As noted elsewhere in this document, data coverage for solar PV plants at utility scale is considered representative, but it is not exhaustive in larger countries.

The precise number of PV installations worldwide is impossible to know, but it is certainly very large. For example, in August 2011, it was reported by Italy’s state
renewable market authority Gestore dei Servizi Elettrici (GSE) that the number of PV installations in Italy was just over 267,000 with a total capacity of 9,700 MW. At the time, the WEPP had data for approximately 440 installations installed with a total capacity of approximately 1,090 MW. Solar PV capacity coverage at approximately a 10-20% rate is probably more-or-less applicable in other OECD countries. Therefore, with the exceptions of some very small countries and territories, the WEPP does not provide an accurate portrayal of overall installed solar PV capacity on a country-wide basis.

Residential-scale PV plants are not usually listed although larger-size housing development (housing estate) PV installations may be included in aggregate where data are available. Also, blocks of PV capacity itemized by local power companies may be included where sufficient detail is available. The PV roll-ups typically have size and geographic location with design data included as available. Note that a substantial amount of installed PV capacity is not grid-connected. Also, most PV systems used for remote telecommunications sites are not included in the WEPP data base.

Small wind turbines (generally under 100 kW) are increasingly being installed by municipalities, local associations, colleges and universities, commercial establishments, individuals, and cooperatives of various kinds. As with very small solar PV plants, very small wind turbines may be included in the WEPP data base, but coverage is not uniform.

Users seeking more inclusive statistics on installed capacity for wind and solar plant are advised to use “top down” data from reputable multinational organizations such as the International Energy Agency, European Photovoltaic Industry Association, Global Wind Energy Council, and national-level associations or organizations such as the American Wind Energy Association, the British Wind Energy Association, or DEWI GmbH in Germany.

SOLAR THERMAL POWER PLANTS

Solar thermal electric power plants (STEP) were first deployed at commercial scale in the 1980s in California. Thereafter, there was a considerable hiatus in deployment until around 2007 when the first of a series of new plants were developed and built in Spain. At utility scale, STEP plants concentrate sunlight using mirrors or lenses and the resulting high-temperature working fluid is put through heat exchangers to generate steam. This is then used in a generally conventional steam-electric cycle with a modified steam turbine. The methodology can be more efficient than photovoltaic technology, and can be modified for energy storage using molten salt, but the plants are considerably more complex to build.

There are essentially four solar field/collector designs in operation at this time. Parabolic trough plants use a curved, mirrored trough which reflects the direct solar radiation onto a glass tube containing a working fluid which when heated passes to a heat exchanger to make steam. A second variety of STPP is the solar tower where a central receiver is
mounted on an elevated tower. A mirror field focuses sunlight onto this device where it heats a salt mix. The molten salt can then be used or stored for late use in a heat exchanger system for steam generator. A third technology is the parabolic dish design. This uses large numbers of smaller dishes to heat fluid in a small central receiver. This can then be used to make electricity using a Stirling engine or other device. A final solar thermal variant uses Fresnel reflectors to capture solar energy and transfer it to tubular systems with working fluids.

All four STPP designs are now in production in different locations and WEPP coverage is comprehensive with over 160 plants worldwide. Those projects that use conventional steam turbines have turbine data much like that for conventional steam plants. Although BOILMFG may be indicated, in fact, the equipment supplied is not a conventional boiler, but rather a solar steam generator consisting of an array of heat exchanges and related equipment. Natural gas may be used as a supplement fuel to balance or supplement solar output.

Note that parabolic trough systems can also be used to generate supplemental steam for use in otherwise conventional combined-cycle power plants. These are usually termed solar hybrid systems and several are now in service. In these instances, the steam turbine component is shown in the WEPP data base with ALTFUEL of SUN.

TIDAL AND WAVE ENERGY POWER PLANTS

While wind and solar energy plants are now being built in large numbers, tidal and wave energy plants remain at an earlier stage of development. Of the two technologies, tidal power plants are of more conventional design and already being deployed at scale. Wave energy plants are still experimental. Both tidal and wave energy plants are included in the WEPP data base and use TTG as the UTYPE code. The technologies are differentiated in the FUELTYPE field, coded as TIDAL and WAVE, respectively.

Tidal power stations typically use diked lagoons to convert tidal energy into electricity using essentially standard hydroelectric turbine-generator sets. There are some additional varieties of onshore installations, but these are much smaller. The first large-scale tidal power is Rance in France and it started operation in 1966. In recent years, technical advances have allowed the implementation of a number of considerably larger plants, although deployment is still constrained by high cost and lack of suitable sites.

In contrast to tidal plants, which in many ways are traditional hydroelectric plants, numerous varieties of wave energy converters have been designed and deployed both onshore and offshore. All are subject to exceptionally demanding environmental conditions and engineering forces. Wave energy developers have built an assortment of power buoys, surface-following devices, shore-mounted turbines, submerged propellers (which obviously use tidal energy as well), oscillating water columns, oscillating ramps or plates, and other devices. Power is generated and, from offshore plant, delivered to shore via conventional power cable or pressurized water pipelines.
All wave energy plants built so far are small and many failed rapidly. Nonetheless, the potential energy available is so large that there will likely be continuing efforts to harness wave energy for power generation in coastal areas. Individual wave-energy converters are typically quite small and may be entered in aggregate as WAVE PLANT 1-10, for example.

ENERGY STORAGE

It is often remarked that one of the main concerns with wind and solar power plants is the intermittent nature of their output. This makes energy storage of increasing interest as there is greater penetration of wind and solar energy plants into the grid. There are a variety of devices available for electricity storage, but only two of them are covered in the WEPP. These are pumped-storage hydroelectric plants (PSP) and compressed air energy storage (CAES) plants.

Pumped-storage hydroelectric plants are used for peak power and frequency control and are of considerable importance in Europe, East Asia, and the USA. There are a number of large plants elsewhere.

PSP facilities use two nearby reservoirs or other waterbodies, separated vertically. The reservoirs may be natural or entirely manmade. Off-peak electricity is used to pump water from the lower reservoir to the upper reservoir and, when required, the water flow is reversed to generate electricity.

The first reversible pump-turbines with motor-generators came into operation in the 1930s. A variant configuration consists of a turbine mounted with an under-coupled pump. Pumped hydro plants of up to about 2 GW have been built and a considerable number are planned or under construction, mostly in China.

Thus far there are only two CAES power stations in operation, although more and larger complexes are in planning. In these installations, off-peak electricity is used to compress air into an underground air-storage cavern. On-peak, the compressed air is released and bled into a specially designed gas-turbine generator to generate electricity. The prime mover is therefore the gas turbine and the fuel is natural gas. The energy savings of using compressed air rather than compressing air as part of the gas turbine operation is on the order of 40%. For WEPP coding, CAES is indicated in the plant name and also listed as the ALTFUEL.

The other main electricity storage devices are flywheel systems and batteries of many different varieties. Neither are covered in the WEPP.

EQUIPMENT RELOCATION

Not infrequently, IC engines and smaller gas and steam turbines are relocated to different plant sites. In some cases, these new sites are nearby, but in other cases the
machinery is sent out of the country. As with repowering, this activity is difficult to track in the data base and the coding scheme has evolved gradually.

For a time, the existing unit records were moved and reattached to their new plant, thereby maintaining the Unit ID numbers. This proved impractical in many instances so the general approach became to retire the existing units and create new records as needed. This also recognizes the fact that relocated machinery is often rebuilt or otherwise refurbished to “zero-hours” condition and placed under warranty, thereby becoming new equipment to all intents and purposes.

STEAM CONDITIONS

Steam conditions in steam-electric plants are an important determinant of thermal efficiency as well as an indirect indicator of the types of materials used in constructing and servicing steam generators and turbines. The WEPP field STYPE is used to indicate subcritical, supercritical, or ultrasupercritical steam conditions with corresponding abbreviations of SUBCR, SUPERC, and ULTRSC, respectively. Additional fields are included for steam flow, steam temperature and reheat temperature(s).

As noted in the documentation, units of measure are metric outside the USA and standard for American units. Pressure and temperature data are obtained preferentially from turbine supplier reference lists or by direct survey. If need be, pressure and temperature data from boiler suppliers is used. Values from the boiler side will differ somewhat from data at the turbine inlet.

At supercritical pressures, steam turbine thermal efficiency improves significantly compared to the typical subcritical cycle. This efficiency improvement leads to reductions in both fuel input and emissions per unit of output. There are few supercritical units less than 300 MW in capacity.

There are various definitions of ultrasupercritical (USC) conditions. The American Electric Power Research Institute (EPRI) defines USC as plants with throttle steam temperature at or above 1,100°F (593°C). Modern USC units first began coming online in the late 1980s.

Note that there are instances where plants are listed as supercritical or USC even if specific steam condition values are missing. Also note that the STYPE field for steam-electric generating units is blank if no data are available.

COOLING SYSTEMS

Steam-electric power plants use very large quantities of water for main condenser cooling and smaller but appreciable quantities for other plant processes. The WEPP data base has a single field tracking main condenser cooling (COOL). The vendor of
cooling system components is not tracked in the data base.

For many large power plants, main condenser is by the so-called “once through” method where water is removed from the ocean, river, lake, etc., run through the plant and discharged, generally to the waterbody that is the original source. In a once through cooling system, little water is consumed, but flow rates are very high (and generally proportional to plant generating capacity). The WEPP List of Abbreviations has separate abbreviations for once through cooling by water type.

The other type of main condenser cooling is known as “closed-cycle” cooling. The most common closed-cycle systems use mechanical draft towers of various designs or natural draft cooling towers (also called hyperbolic towers). Here cooling water is repeatedly re-circulated so withdrawal rates are much lower, but consumption by evaporation is much higher. There are a variety of other closed-cycle cooling systems. The next most common are cooling lakes and cooling ponds.

In recent years, many power plants, particularly the steam components of combined-cycle power plants, have been installed with air-cooled condensers, essentially giant radiators. These use minimal amounts of water, but exact a performance penalty. These direct, air- cooled units are separately coded in the data base as AIR.

In some district-heating installations, the incorporated CHP power plant may have no cooling system at all as all heat is dissipated in heat exchangers, heating system piping, or elsewhere in the system. This type of installation has its own abbreviation.

Only steam-electric units have cooling systems listed in the WEPP data base. IC engines require cooling as well, but this information is not recorded. Almost all IC engines are air- cooled, often using expansive arrays of fan-assisted radiators.

A NOTE ON CHINA

After intensive research and updating during the summer of 2011, the aggregate installed Chinese generating capacity value in the WEPP data base has reached approximate parity with the “official” China State Electricity Regulatory Commission (SERC) estimates released on a periodic basis. There are still issues with tracking renewable energy and small-hydro plants in China, but these will likely remain for the foreseeable future due to the very large number of facilities involved.

Early Chinese thermal power station development during the 1950s was largely based on Soviet experience and equipment. This resulted in large numbers of standardized, series- built sets at 6-, 12-, 25-, 50- and, ultimately, 100-MW and up. Over the last decade, Chinese power companies have closed hundreds of smaller thermal generating units and replaced them with larger sets in line with official government guidance. In the 1980s and particularly in the 1990s, many large-scale diesel power stations were built in South China to support burgeoning manufacturing activities. These plants are mostly
retired or deactivated. In addition, most of the conventional, utility-owned thermal units at 100-MW and less in South and East China are thought to be closed or deactivated.

In each instance, detailed lists are hard to come by so users are cautioned that the WEPP data base may overstate the number of smaller steam-electric sets and large diesel engines still installed in China. The status code “UNK” (unknown) is often used until more definitive status information can be obtained.

There are a number of other factors to consider when analyzing the WEPP data for China:

1) Many large Chinese coal-fired or gas-fired plants are built in very short time periods, frequently 24 months or less. This means that new plants may already be in operation by the time an announcement of government authorization or a construction start is noted by WEPP research staff.

2) It is known that not all Chinese power plants are formally authorized for construction by responsible central authorities. This makes it likely that some large power plants are not recorded for months or even years after completion.

3) English translation of Chinese power plant and power company names is difficult and time consuming and leaves many opportunities for mis-reporting and double-counting.

4) Joint power plant ownership arrangements are very common in China. These arrangements are complex and change frequently and, in a further complication, transactions are often with related companies. In general, an attempt is made to roll-up plants to the largest controlling entity.

UDI continues to work diligently to build and maintain the China power plant data set and plant- and unit-level data are constantly secured from power companies, equipment suppliers, EPC companies, and the trade and business press.

A NOTE ON JAPAN

Japanese power companies generally use standard numbering schemes for their power stations and generating units. However, due to the scarcity of power plant sites, whole series of plants and units have frequently been built in close proximity to one and another and these arrangement are proportionately more numerous than in other countries. For example, Japan has well over 400 hydropower stations in such build-outs, which are essentially analogous to so-called “cascade” arrangements common in many countries.

In the WEPP data base, Japanese numbering is therefore extensively used. The relevant phrases with English translation are as follows:
A series of other words recur in Japanese power company and power plant names, and in database geocoding. Some of the more relevant examples follow:

CHO or MACHI Town
GUN County, district
HARA Original
HIGASHI East
KAWA or GAWA River, stream, brook
KITA North
KYODO Cooperative
MINAMI South
MINATO Harbo
MURA Village
NISHI West
OKU Literally deep, in this case, remote or rural
OWASE River basin, also a city name
SHIN New
SHI or CHI City

POWER PRODUCER BUSINESS TYPES AND CLASSIFICATIONS

The field BUSTYPE includes a primary business classification plus a secondary descriptor. The primary business classifications include COMM, ENERGY, FUELS, GOVT, MFG, SVCS, UTIL OTHER, and UTIL.

The secondary or functional descriptor provides additional details for the power plant operating companies. Under COMM (commercial), for example, are such establishments as greenhouses and hospitals, while MFG (manufacturing) companies include cement and building materials, pulp and paper, metals plants, textiles, and other manufacturing enterprises, ENERGY has coal, oil and gas, and so on. There are approximately 70 different primary plus secondary business combinations represented in the data base.

As described above, many utilities that operate in heavily regulated circumstances in their home markets may operate as merchant power companies other countries. Also, many large investor-owned utilities left their home markets and acquired power utilities
in other regions. While many of these deals have been unwound, a considerable number persisted.

N/A AND NOT APPLICABLE

Throughout the data base, "N/A" is used to indicate "not applicable" in alphanumeric fields. N/A fields include, for example, boiler, air pollution, and cooling system data for hydroelectric plants, particulate controls for gas turbine and combined-cycle plants, etc.

Blanks in alphanumeric fields indicate data are "not available". Blanks in numeric fields may indicate missing data or "not applicable."

COMPARISONS WITH OTHER SOURCES

Oftentimes, WEPP users compare data base analyses with results generated from other sources. This in turn can result in capacity and/or power station count variations from one source to another, variations which are only explicable by comparing coding for individual plants and generating units. This can be a time-consuming and complicated task.

The most important sources of variance include: 1) different operating status, that is some units may be shutdown, operational, proposed, etc., in one source and not another, 2) differences between fuels (pipeline gas vs LNG, for example), or there may be dual-fuel plant listings with primary and alternate fuels flipped, that is FUEL = GAS in one instance and FUEL = OIL, in another instance, and 3) the various sources may simply include or not include the same power plants and/or the same units.

Other frequent issues are: 1) inclusion or non-inclusion of capacity attributed to the steam-electric component of CCGT plant, 2) tracking of GT cogen plants (that is machines with heat recover, but not in CCGT configuration) and repowering projects, 3) confusion between gas-fired reciprocating gensets and gas turbine-based plants, 4) inadvertent inclusion of diesel engines, gas turbines or steam turbines on offshore platforms and related facilities, and inclusion of mechanical drive engines or turbines (not tracked in the WEPP).

APPENDIX A
Appendix A - Qualitative Statement of WEPP Coverage - Installed Capacity and Near-Term Capacity Additions

<table>
<thead>
<tr>
<th>Fuel/Technology</th>
<th>Unit Size (MW)</th>
<th>Company Type</th>
<th>WEPP Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal steam-electric - fossil fuels</td>
<td>>=50</td>
<td>All</td>
<td>Complete except comprehensive in CN</td>
</tr>
<tr>
<td>Thermal steam-electric - fossil fuels</td>
<td><50</td>
<td>Utility, IPP</td>
<td>Comprehensive except representative in CN</td>
</tr>
<tr>
<td>Thermal steam-electric - fossil fuels</td>
<td><50</td>
<td>Auto/Ind</td>
<td>Comprehensive except adequate in CN</td>
</tr>
<tr>
<td>Thermal steam-electric - waste-to-energy (electric)</td>
<td>All</td>
<td>All</td>
<td>Complete except comprehensive in JP and CN</td>
</tr>
<tr>
<td>Thermal steam-electric - biomass except bagasse</td>
<td>All</td>
<td>All</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Thermal steam-electric - bagasse</td>
<td>All</td>
<td>All</td>
<td>Comprehensive except representative in BR and IN</td>
</tr>
<tr>
<td>Nuclear</td>
<td>All</td>
<td>All</td>
<td>Complete</td>
</tr>
<tr>
<td>Combined-cycle</td>
<td>>=100</td>
<td>All</td>
<td>Complete</td>
</tr>
<tr>
<td>Combined-cycle</td>
<td><100</td>
<td>All</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Gas turbine - simple and cogen</td>
<td>>=25</td>
<td>All</td>
<td>Complete</td>
</tr>
<tr>
<td>Gas turbine - simple and cogen</td>
<td><25</td>
<td>Utility, IPP</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Gas turbine - simple and cogen</td>
<td><25</td>
<td>Auto/Ind</td>
<td>Representative</td>
</tr>
<tr>
<td>Hydroelectric - conventional</td>
<td>>=100</td>
<td>All</td>
<td>Complete</td>
</tr>
<tr>
<td>Hydroelectric - conventional</td>
<td>25-100</td>
<td>All</td>
<td>Complete except comprehensive in CN</td>
</tr>
<tr>
<td>Hydroelectric - conventional</td>
<td>5-25</td>
<td>All</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Hydroelectric - conventional</td>
<td><5</td>
<td>All</td>
<td>Representative except adequate in CN</td>
</tr>
<tr>
<td>Hydroelectric - pumped storage</td>
<td>All</td>
<td>All</td>
<td>Complete</td>
</tr>
<tr>
<td>IC engines - oil and natural gas</td>
<td>>=20</td>
<td>All</td>
<td>Complete</td>
</tr>
<tr>
<td>IC engines - oil and natural gas</td>
<td>5-20</td>
<td>All</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>IC engines - oil and natural gas</td>
<td><5</td>
<td>Utility, IPP</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>IC engines - oil and natural gas</td>
<td><5</td>
<td>Auto/Ind</td>
<td>Adequate</td>
</tr>
<tr>
<td>IC engines - landfill gas</td>
<td><5</td>
<td>All</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>IC engines - biogas, digester gas</td>
<td><5</td>
<td>All</td>
<td>Comprehensive except adequate in DE</td>
</tr>
<tr>
<td>Geothermal</td>
<td>All</td>
<td>All</td>
<td>Complete</td>
</tr>
<tr>
<td>Wind turbines - onshore</td>
<td>>=1</td>
<td>All</td>
<td>Comprehensive except representative in CN, DE, DK and IN</td>
</tr>
<tr>
<td>Wind turbines - onshore</td>
<td><1</td>
<td>All</td>
<td>Adequate</td>
</tr>
<tr>
<td>Wind turbines - offshore</td>
<td>All</td>
<td>All</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Fuel cells</td>
<td>All</td>
<td>All</td>
<td>Comprehensive for utility-scale installations</td>
</tr>
<tr>
<td>ORC plants (multi-fuel)</td>
<td>All</td>
<td>All</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Solar thermal - collectors, towers</td>
<td>All</td>
<td>All</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Solar PV</td>
<td>>=10</td>
<td>All</td>
<td>Comprehensive</td>
</tr>
<tr>
<td>Solar PV</td>
<td><10</td>
<td>All</td>
<td>Adequate</td>
</tr>
</tbody>
</table>

Notes/Description

Complete = complete or virtually complete coverage of extant plants and firm projects, 95%+ of facilities
Comprehensive = considerable majority of extant plants and firm projects, 75%+ of facilities
Representative = probable majority of extant plants and firm projects, 50%+ of facilities
Adequate = less than majority of extant plants and/or insufficient data for comparison
Auto/Ind = autoproducer (captive power)/industrial or commercial power plant