Roadmap to the future: Cellulosic Ethanol
BP Biofuels a growing alternative

Olivier Macé
Monday 10th June 2013
This presentation contains forward-looking statements based on management’s current expectations, estimates and projections. All statements that address expectations or projections about the future, including statements about the company’s strategy for growth, product development, market position, expected expenditures and financial results are forward-looking statements. Some of the forward-looking statements may be identified by words like “expects,” “anticipates,” “plans,” “intends,” “projects,” “indicates,” and similar expressions. These statements are not guarantees of future performance and involve a number of risks, uncertainties and assumptions. Many factors could cause results to differ materially from those stated. These factors include, but are not limited to, changes in the laws, regulations, policies and economic conditions of countries in which the company does business; competitive pressures; successful integration of structural changes, including acquisitions, divestitures and alliances; research and development of new products, including regulatory approval and market acceptance, and seasonality of sales of agricultural products.
Today’s agenda

- Cellulosic ethanol – what’s the deal?
- Key Success Factors
- BP’s involvement
Cellulosic process flow (bio-chemical)

Similar to sugarcane ethanol

Energy Grass Harvest

3 key components to biomass
Hemi-Cellulose ~ 25%
Cellulose ~ 40%
Lignin ~ 35%

Boiler

Steam for process

Similar to sugarcane ethanol

Simplified Cellulosic Ethanol Schematic

Feed Pre-Treatment

Hydrolysis

Biocatalysts

Supply

Acid Hydrolysis of Hemicellulose

Liquid Xylose sugar stream

Solid /liquid Cellulose + Lignin stream

Fermentation

Xylose + Cellulose/ Glucose Fermentation

Separation / Recovery

Distillation

Lignin

Boiler
California
10% GHG reduction of all road transport fuels (LCFS) by 2020

US Federal Renewable Fuel Standard (RFS2)
3 categories: Conventional, Advanced (>50% GHG savings) and Cellulosic
16bn gal by 2022

EU Renewable Energy Directive
Cellulosic biofuels counting 2X or 4X

Fuels Quality Directive
2020 6% lifecycle GHG Reduction of road transport fuels vs a 2010 baseline

Regulatory Support
Drivers of success - technology

- Biocatalyst key driver of profitability
- Two main biocatalysts – enzymes and yeast
- Inter-dependency with Process
Drivers of success – process integration

• Multi-factorial optimization
 • Capital
 • Operating costs
 • Reliability

• No standard answer

• The scale-up challenge

⇒ Know-how!
Drivers of success - feedstocks

- Large share of production cost
- Multiple choices
 - Fungible?
 - Grown v collected?
- Sustainability matters…
Drivers of success - financing

- What does the banker want?
- De-risking the technology
- Offtakes
- Operating credibility
Drivers of success – operating know-how

- “First-of-its-kind” technology
- Biology not Chemistry!
BP technical capability

- World-leading biotechnology R&D facility in San Diego
- Partnership with Energy Bioscience Institute (EBI)
Jennings Demonstration Facility

The proof of the pudding...
Feedstocks: Highlands, Beaumont

Dedicated bio-energy feedstocks
End-to-end capability

Integrated know-how (field to pump)
In summary...

- Attractive opportunity
- Five things to get right
- Distinctive, advantaged technology
- Getting ready to licence
Biofuels at BP

BP Biofuels a growing alternative